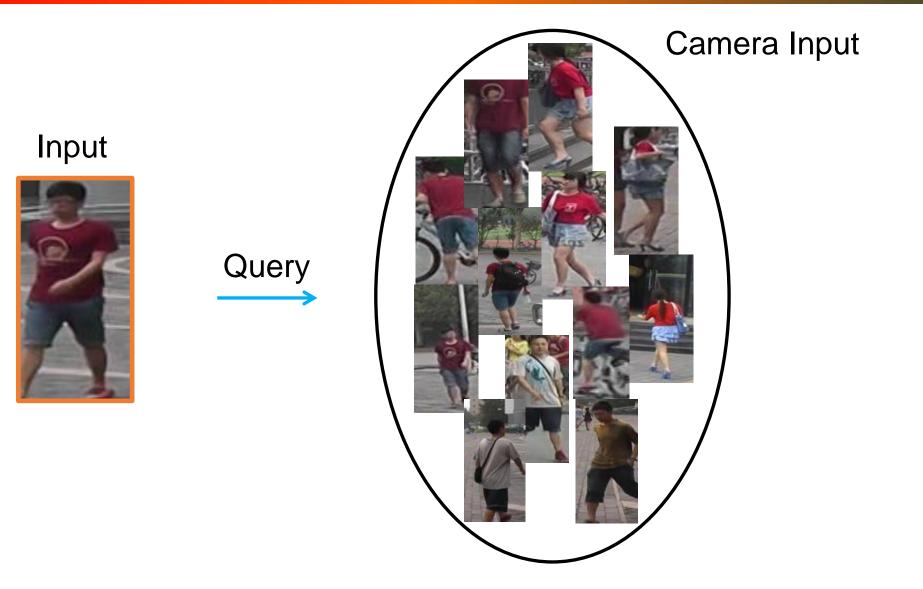
Pooling Body Parts on Feature Maps for Misalignment Robust Person Re-Identification

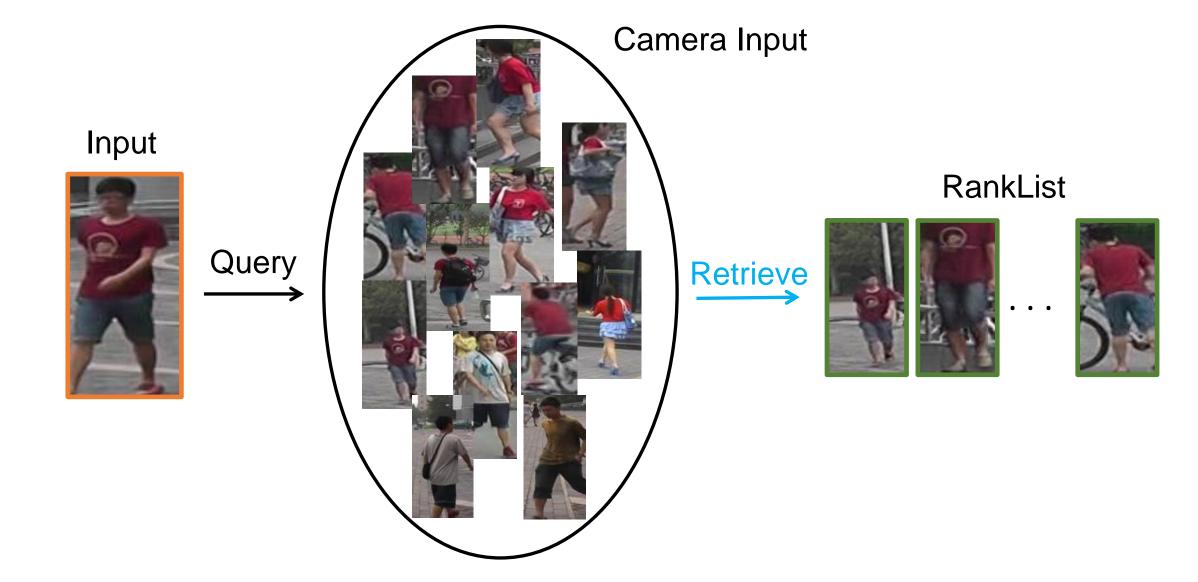
Yuting Liu, Qijun Zhao, Zhihong Wu College of Computer Science, Sichuan University, Chengdu, China

ISBA 2018 January 12, 2018

Person Re-identification

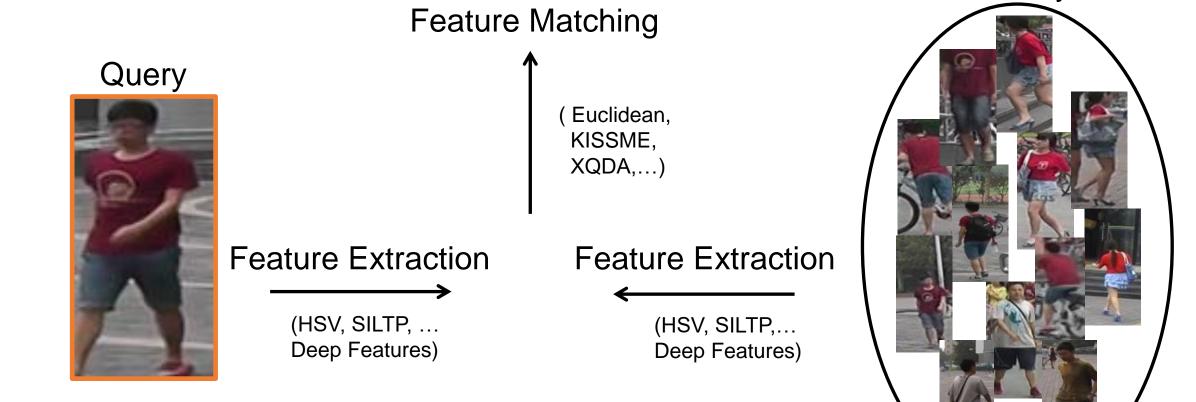


Person Re-identification

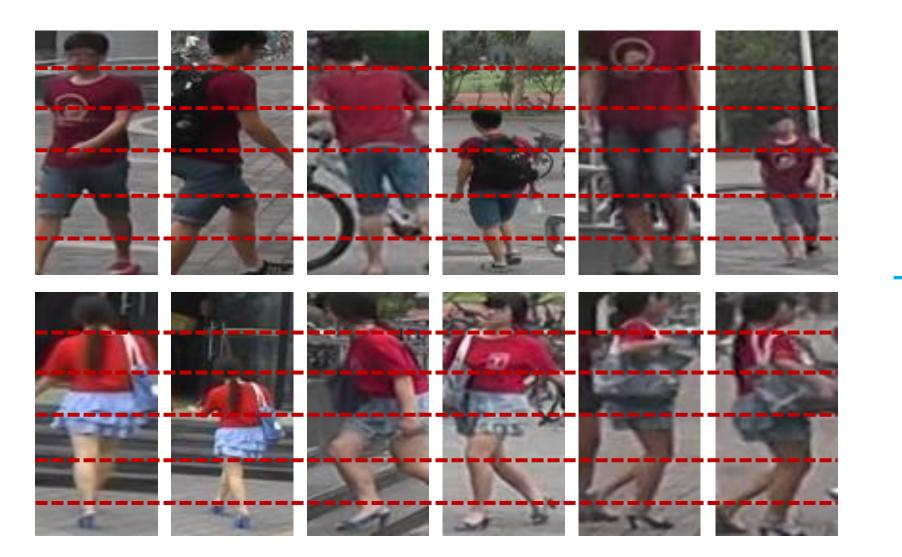


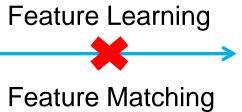
Classical Method

Gallery

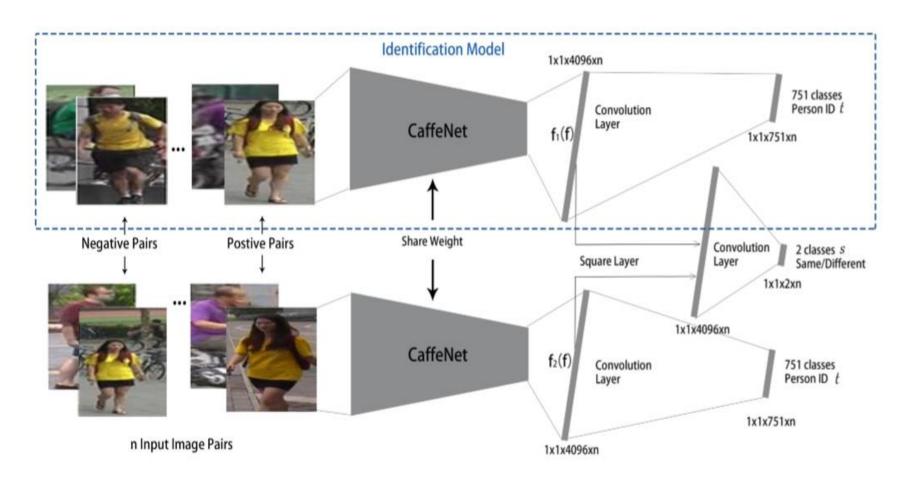


Misalignment



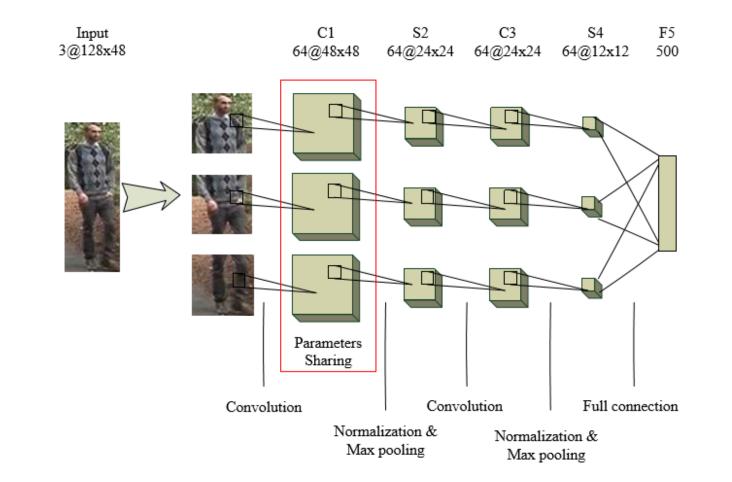


Existing DL Works



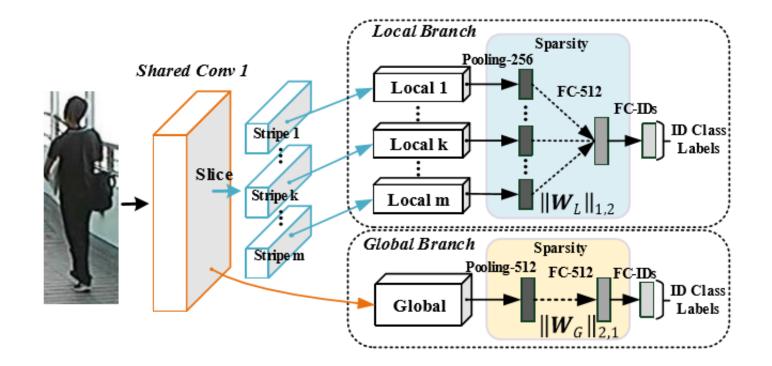
Z. Zheng, L. Zheng, Y. Yang. A Discriminatively Learned CNN Embedding for Person Reidentification. ACM Transactions on Multimedia Computing, Communications, and Applications, 2016.

Existing DL Works

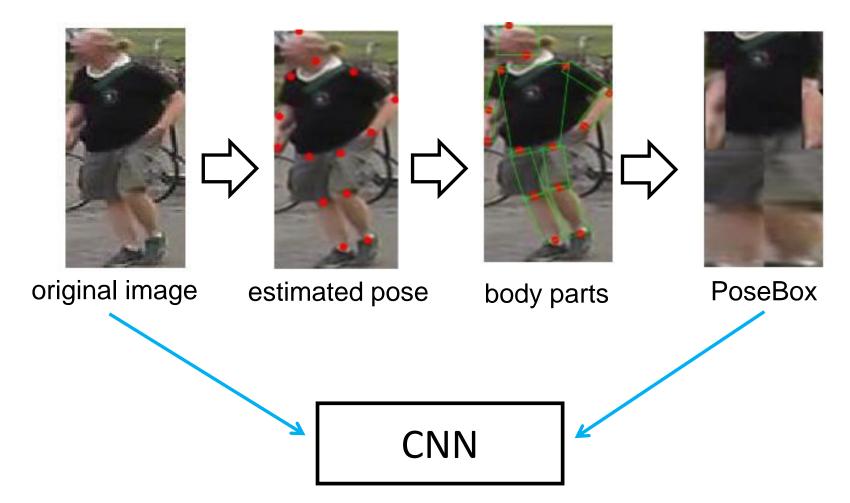


D. Yi, Z. Lei, S. Liao, S. Z. Li. Deep Metric Learning for Person Re-identification. In ICPR, 2014.

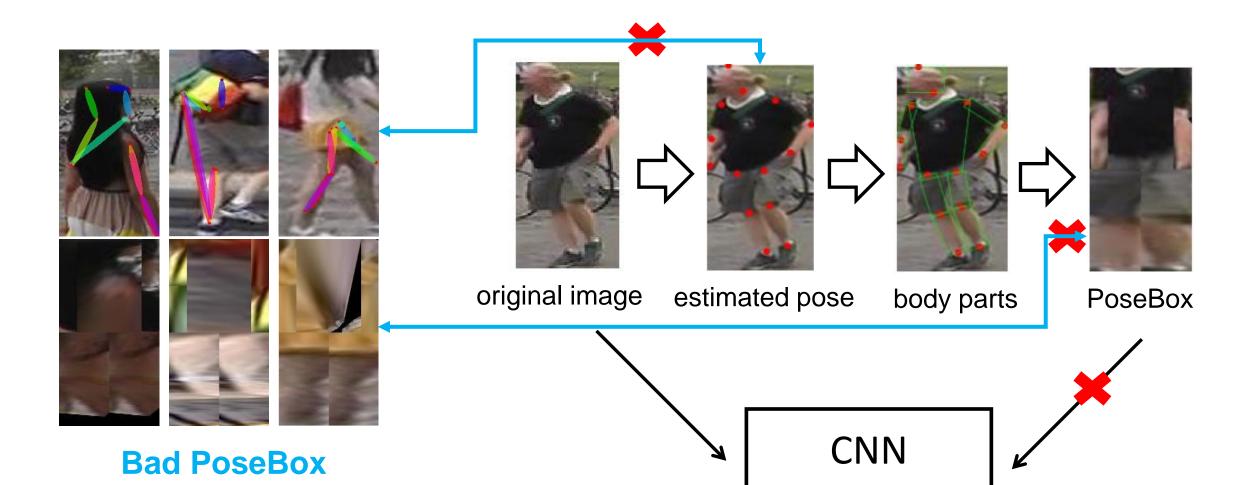
Existing DL Works



W. Li,X. Zhu,S. Gong. Person Re-Identification by Deep Joint Learning of Multi-Loss Classification. In IJCAI, 2017

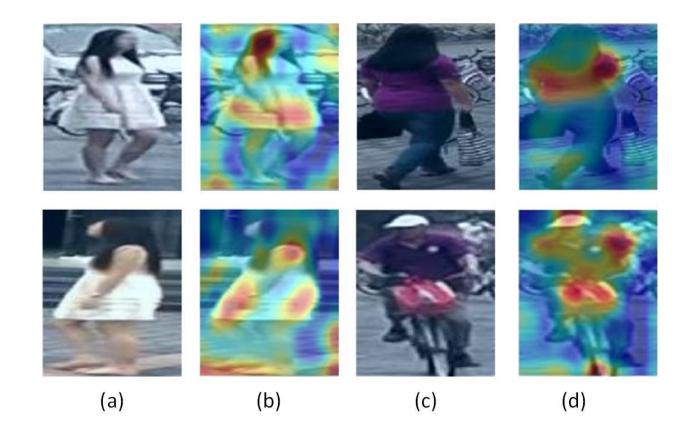


L. Zheng, Y Huang, H. Lu, and Y. Yang. Pose Invariant Embedding for Deep Person Re-identification. ArXiv preprint arXiv:1701.07732, 2017.



Main Idea

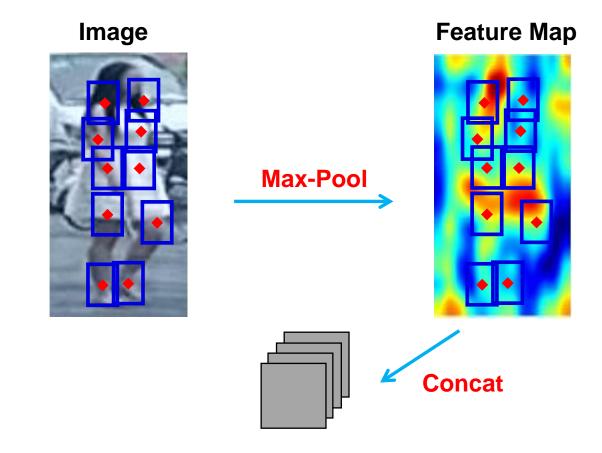
Salient Local Features



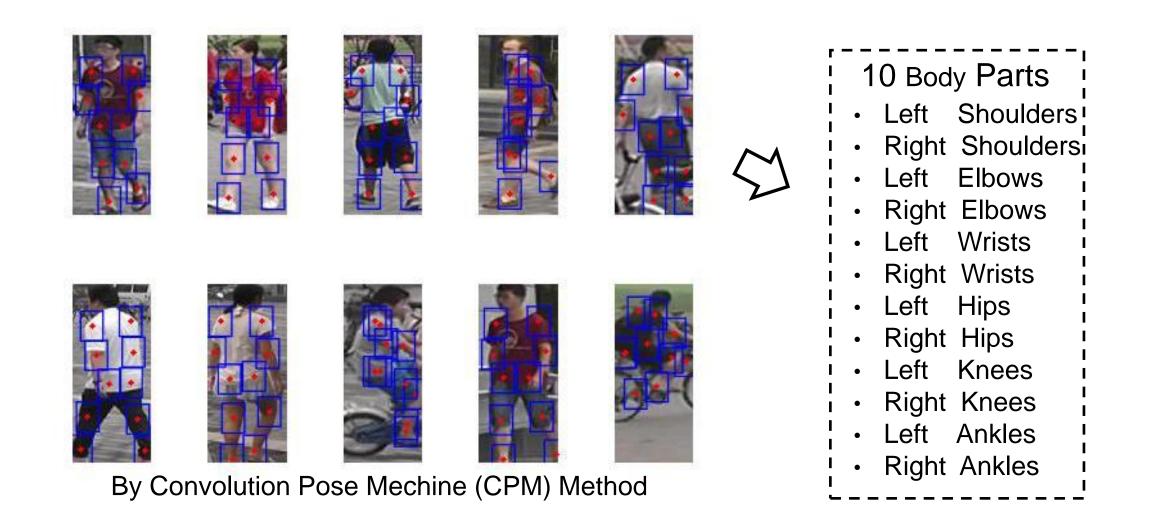
Main Idea

• Pooling Body Parts on Feature Maps

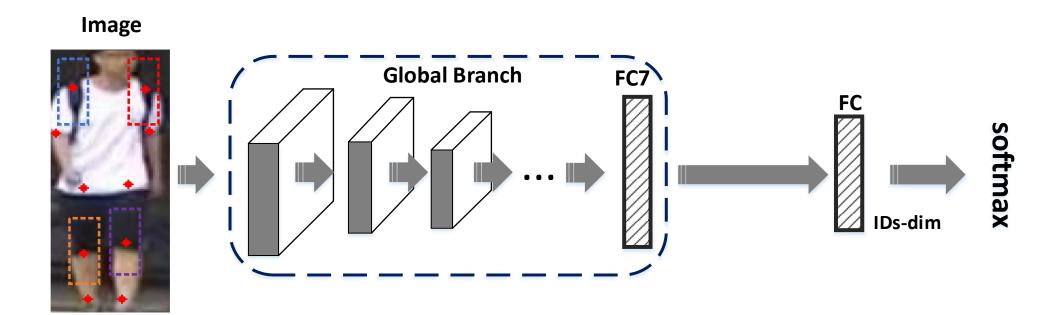




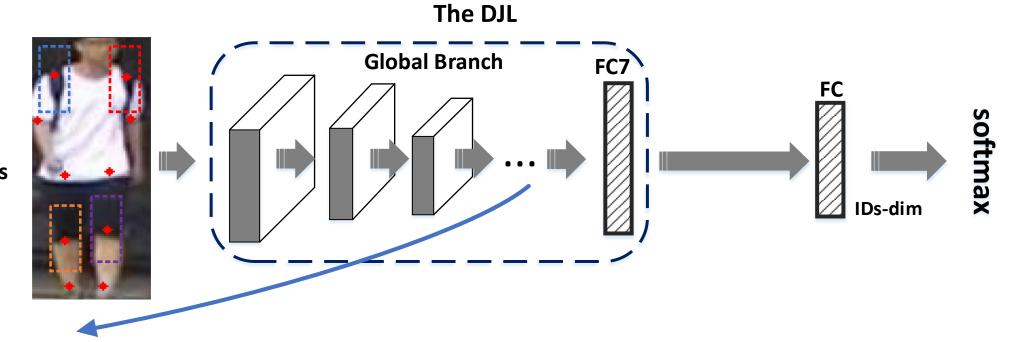
Body Part Segmentation



The Base Network

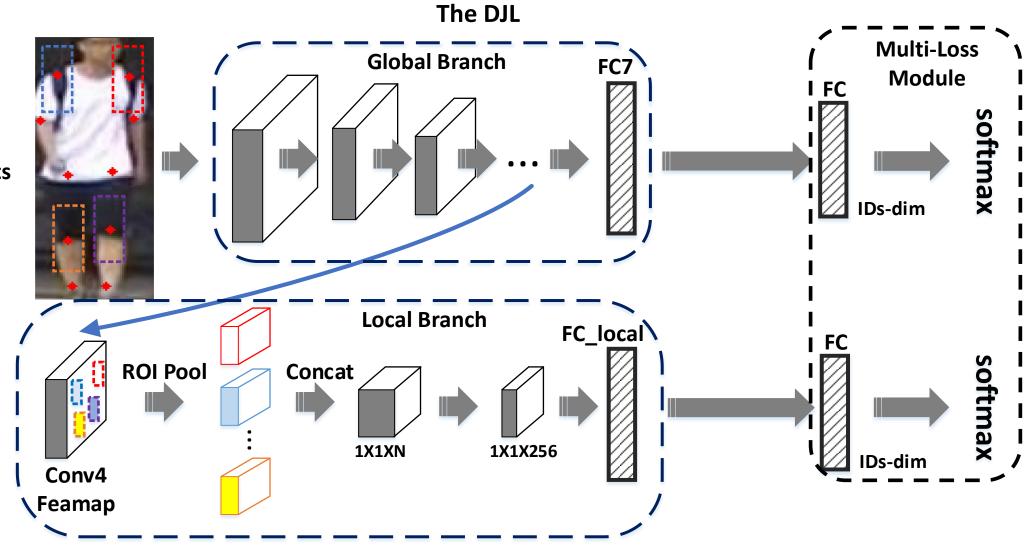


BKI



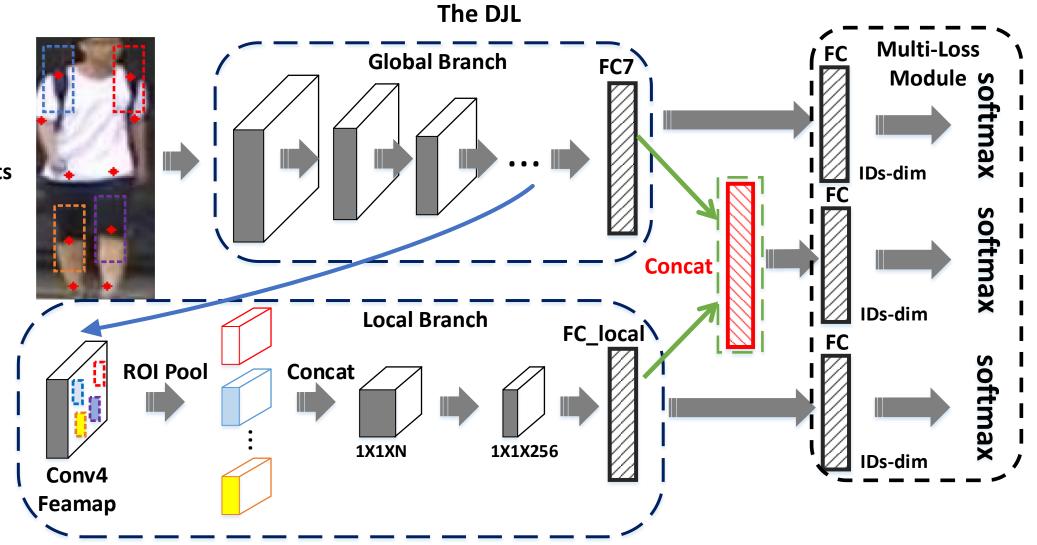
RKI

Image & Body Parts



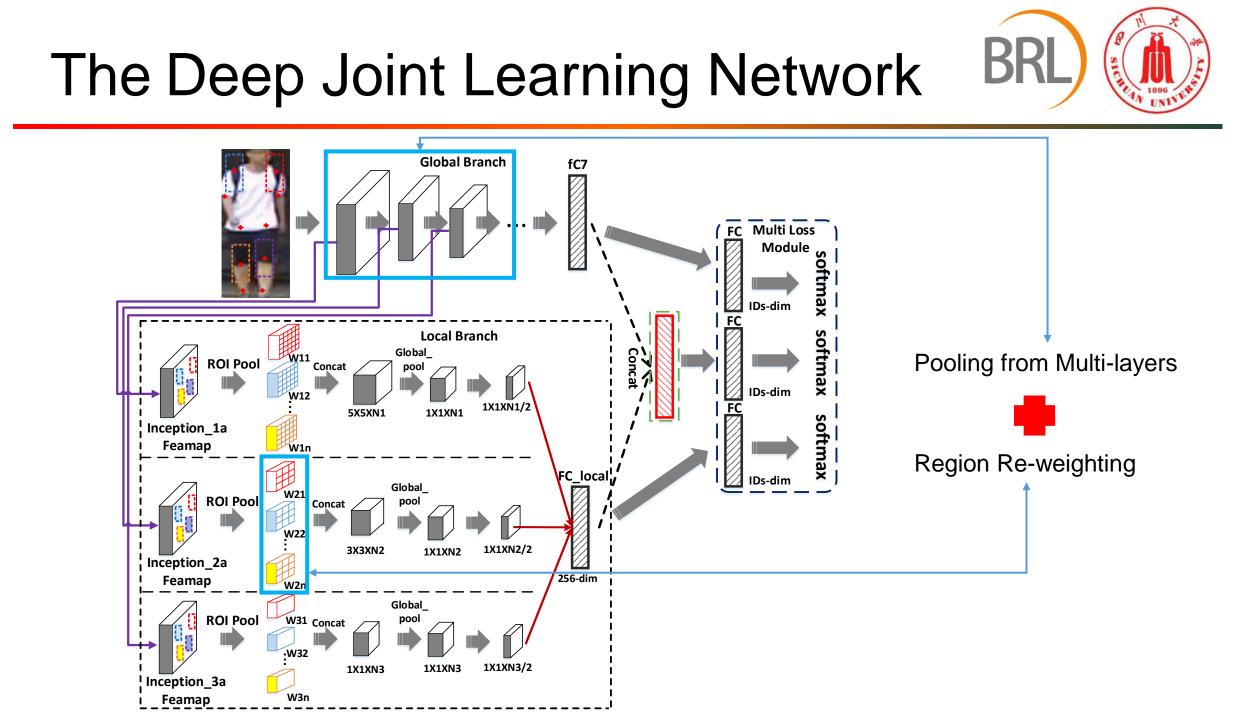
ВK

Image & Body Parts



ВK

Image & Body Parts



• Comparison with the three base networks

Method	Market-1501				CUHK03				
	Rank-1	Rank-5	Rank-10	Rank-20	mAP	Rank-1	Rank-5	Rank-10	Rank-20
AlexNet	57.75	77.52	84.47	89.46	33.80	53.03	79.53	87.82	94.21
Residual-50	72.42	86.49	91.03	94.42	48.01	61.79	85.46	92.31	97.86
InceptionNet	79.66	91.51	94.54	96.50	56.59	80.85	95.90	98.17	99.48
Proposed (AlexNet)	67.64	84.80	89.88	93.53	43.60	71.95	90.30	94.91	98.16
Proposed (Residual-50)	78.86	90.38	93.91	96.35	55.49	80.83	95.92	98.66	99.54
Proposed (InceptionNet)	85.12	93.91	95.69	97.51	64.82	84.25	97.40	98.86	99.67

Comparison with PIE

Base Network	Marke	et-1501	CUHK03		
Dase Network	DJL PIE		DJL	PIE	
AlexNet	+9.89	+9.12	+18.92	+2.65	
Residual-50	+6.44	+5.66	+19.04	+5.50	

• Comparison with state-of-the-art methods on Market1501 and CUHK03

Methods	Rank-1	mAP
Gate-SCNN [29]	65.88	39.55
PIE [34]	78.65	53.87
DLCE [35]	79.51	59.87
MSCAN [19]	80.31	57.53
APR [21]	84.29	64.67
JLML [19]	85.10	65.50
DJL	85.12	64.82
D.JL+RRW+Mul_s	85.99	65.65

(a) Comparison with state-of-the-art methods on Market1501. Rank-1 accuracy (%) and mAP (%) are shown.

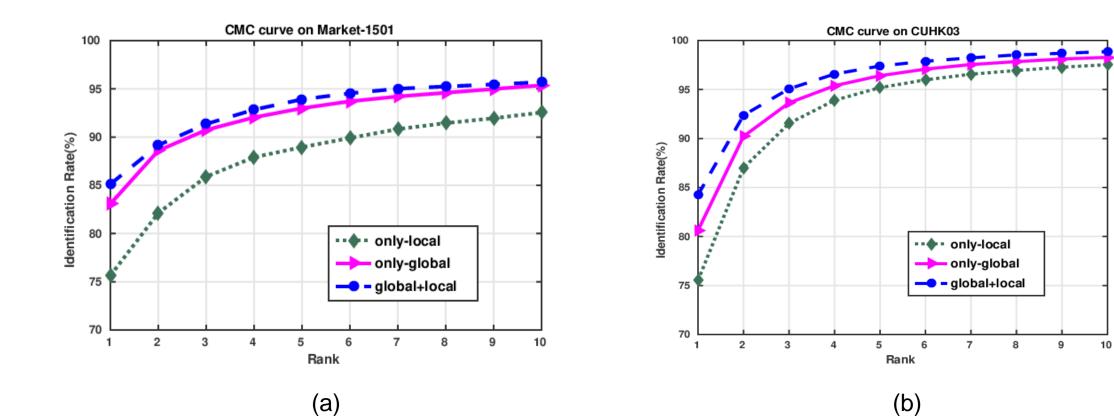
Methods	Rank-1
PIE [34]	62.60
MSCAN [19]	67.99
Gate-SCNN [29]	68.10
X-Corr [27]	72.00
JLML [19]	80.60
DJL	84.25
DJL+RRW+Mul s	85.90

(b) Comparison with state-ofthe-art methods on CUHK03.Rank-1 accuracy (%) is shown.

• The impact of body part segmentation error

Base Network	Experiment setting	Market-1501					
	Experiment setting	Rank-1	Rank-5	Rank-10	Rank-20	mAP	
AlexNet	-	67.64	84.80	89.88	93.53	43.60	
	Disturb-small	68.82	84.95	89.31	93.50	44.89	
	Disturb-violent	64.79	82.21	88.15	92.22	40.84	
Residual-50	-	78.86	90.38	93.91	96.35	55.49	
	Disturb-small	77.76	89.88	92.96	96.02	54.62	
	Disturb-violent	75.95	88.60	92.37	95.19	52.71	
InceptionNet	-	85.12	93.91	95.69	97.51	64.82	
	Disturb-small	84.53	93.79	95.93	97.54	64.89	
	Disturb-violent	83.61	93.65	95.99	97.60	63.44	

• Complementary effects



• Retrieval examples

Conclusion

- Propose a DJL network to learn better feature representation from both entire image and local body parts.
- Do feature level alignment by pooling the features around the body parts to learn misalignment robust local features.
- Jointly optimizes the global and aligned local features to further enhance the discriminative capability of learned feature representations.
- The simple and efficient DJL pipeline can be easily integrated with other state-of-theart person re-ID networks

Thank you!

2018 IEEE 4th International Conference on Identity, Security, and Behavior Analysis (ISBA)