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• Estimate the number of people in a crowd scene

Crowd Counting(CC)

Density Map

Head Detections

How many persons ???

Two typical methods 

2



• Huge labelling Cost

• Scene-dependent Crowd Counter

Bottom Necks to Open-world CC
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1111

• What do we care: Alleviating the annotation burden
• In this work: Unsupervised cross-scene transferring

Exhausted Dot Annotation Scene variance



Observation : complementary property
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How about letting RegNet and 
DetNet Co-teaching each other in 

the Target? 

GT:10

Pred:4

GT:10.00

Pred:10.00



Motivation: Reg-Det Bi-knowledge Transfer

• How to co-teach RegNet & DetNet?

Det-to-Reg ψ
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Reg-to-Det Φ

Detection dot map Density map

--Scene agnostic mutual transformations modelling in Source
-- Reg-Det bi-knowledge transfer in Target 

Binary map



Our Approach: overview
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Reg-to-Det Φ

Det-to-Reg ψ

RegNet R

Reg-to-

Det 

Det-to-

Reg

DetNet D

Density Map

Fusion 

Location Map

Fusion 

Reg-Det bi-knowledge transfer in Reg-Det mutual transformations 

modelling in 

Step 1: Density and location inference

Step 2: Pseudo ground truth generation

Step 3: Self-supervised fine-tuning



Our Approach: mutual transformations modelling
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Reg-to-Det Φ
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Det-to-Reg ψ
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Our Approach: Reg-Det bi-knowledge transfer
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RegNet R

Det-to-Reg ψ

DetNet D

Step 1: Density and location inference

Reg-to-Det Φ



Our Approach: Reg-Det bi-knowledge transfer
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Step 2: Pseudo ground truth generation

Det-to-Reg

Reg-to-Det

Density Map

Fusion 

Location Map

Fusion 



Our Approach: Reg-Det bi-knowledge transfer
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RegNet R

Reg-to-Det 

Det-to-Reg

DetNet D

Density Map

Fusion 

Location Map

Fusion 

Step 3: Self-supervised fine-tuning



Experiments
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Experiments

12

Table 1: Comparisons with the state-of-the-art methods in the transfer setting. Syn denotes transfer 

learning using a large size synthetic dataset. Real denotes transfer learning using a real source dataset. The 

methods with ∗ indicate the source is the synthetic dataset GCC.



➢How to learn a good Reg-to-Det Φ?

Experiments
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➢How to generate samples for fine-tuning?

➢How to adapt the model to the target?

Table 2: Investigation on training the Reg-to-Det transformer

Table 3: Ablation study on generating pseudo GT

Table 4: Ablation study on self-supervised learning iterations



• New unsupervised crowd counting scheme via regression-detection bi-
knowledge

• Formulate the mutual transformations between the output of regression 
and detection models to enable knowledge distillation between them

• Co-training regression and detection models using pseudo labels in an 
iterative self-supervised way

Conclusion
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Thank you!
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