

Towards Unsupervised Crowd Counting via Regression-Detection Bi-knowledge Transfer

Yuting Liu¹, Zheng Wang², Miaojing Shi³, Shin'ichi Satoh², Qijun Zhao¹, Hongyu Yang¹ ¹College of Computer Science, Sichuan University, ²National Institute of Informatics, ³King's College London

• Estimate the number of people in a crowd scene

Head Detections

- Huge labelling Cost
- Scene-dependent Crowd Counter

Exhausted Dot Annotation

Scene variance

- What do we care: Alleviating the annotation burden
- In this work: Unsupervised cross-scene transferring

How about letting RegNet and DetNet Co-teaching each other in the Target?

- How to co-teach RegNet & DetNet?
 - --Scene agnostic mutual transformations modelling in Source
 - -- Reg-Det bi-knowledge transfer in Target

Reg-to-Det Φ

Reg-Det mutual transformations modelling in S

Reg-to-Det Φ

1.1		29.79	
2 W	J. T.	4	
	2. 20	1 / A P	
			_

Det-to-Reg Ψ

Our Approach: <u>mutual transformations modelling</u>

 M^D

Det-to-Reg ψ

$$loss = l_{focal-mse} + l_{dms-ssim}$$

 M^R

$$l_{focal-mse} = \kappa_i (1 - p_i)^{\gamma} (M^D - \Phi(M^R)^2)$$

$$\mathbf{p}_{i} = \begin{cases} \frac{1}{1 + e^{-(\Phi(M_{i}^{R}))}}, & M_{i}^{D} = 1\\ 1 - \frac{1}{1 + e^{-(\Phi(M_{i}^{R}))}}, & o.w. \end{cases}, & \kappa_{i} = \begin{cases} 1, & M_{i}^{D} = 1\\ 0.1, & o.w. \end{cases}$$

7

→ Step 1: Density and location inference

Step 2: Pseudo ground truth generation

Step 3: Self-supervised fine-tuning

Iteration 0

Iteration 1

Iteration 2

Iteration 3 11

Table 1: **Comparisons with the state-of-the-art methods** in the transfer setting. Syn denotes transfer learning using a large size synthetic dataset. Real denotes transfer learning using a real source dataset. The methods with * indicate the source is the synthetic dataset GCC.

Method			A→B			A→C			A→Q			B→A			B→Q	
		MAE↓	MSE↓	mAP↑	MAE↓	MSE↓	mAP↑	MAE↓	MSE↓	mAP↑	MAE↓	MSE↓	mAP↑	MAE↓	MSE↓	mAP↑
Cycle GAN [*] [44]	Syn	25.4	39.7	_	404.6	548.2	-	257.3	400.6	-	143.3	204.3	-	257.3	400.6	-
SE Cycle GAN* [35]	Syn	19.9	28.3	_	373.4	528.8	_	230.4	384.5	-	123.4	193.4	_	230.4	384.5	-
SE+FD* [5]	Syn	16.9	24.7	-	-	-	-	221.2	390.2	-	129.3	187.6	-	221.2	390.2	-
MCNN [41]	Real	85.2	142.3	_	397.7	624.1	-	_	-	-	221.4	357.8	_	-	-	_
D-ConvNet-v1 [28]	Real	49.1	99.2	-	364	545.8	_	-	-	-	140.4	226.1	-	-	-	-
L2R [21]	Real	-	-	-	337.6	434.3	-	-	-	-	-	-	-	-	-	-
SPN+L2SM [37]	Real	21.2	38.7	-	332.4	425.0	-	227.2	405.2	-	126.8	203.9	-	-	-	-
RegNet [18]	Real	21.65	37.56	-	419.53	588.90	_	198.71	329.40	_	148.94	273.86	-	267.26	477.61	-
DetNet [20]	Real	55.49	90.03	0.571	703.72	941.43	0.258	411.72	731.37	0.404	242.76	400.89	0.489	411.72	731.37	0.404
Ours	Real	13.38	29.25	0.757	368.01	518.92	0.518	175.02	294.76	0.546	112.24	218.18	0.661	211.30	381.92	0.535

\succ How to learn a good Reg-to-Det Φ ?

Table 2: Investigation on training the Reg-to-Det transformer

Solution	Loss	A→Q	A→B
Encoder-decoder	L_{MSE}	0.347	0.482
	$L_{Focal-MSE}$	0.423	0.599
	$L_{Focal-CE}$	0.399	0.554
	L_{Φ}	0.448	0.613

≻How to generate samples for fine-tuning?

Table 3: Ablation study on generating pseudo GT

	Regre	ession	Detection					
D→A	MAE↓	MSE↓	MAE↓	MSE↓	mAP↑			
Ours w/o Fusion	146.78	275.35	251.75	407.04	0.467			
Ours w/ RS	152.19	281.05	165.80	302.90	0.609			
Ours	112.24	218.18	124.12	222.42	0.661			

≻How to adapt the model to the target?

Table 4: Ablation study on self-supervised learning iterations

	Regre	ession			
D→A	MAE↓	MSE↓	MAE↓	MSE↓	mAP↑
Iteration 0	148.94	273.86	242.76	400.89	0.489
Iteration 1	136.81	258.38	172.36	305.04	0.598
Iteration 2	125.86	228.31	138.18	251.75	0.621
Iteration 3	114.06	222.55	126.86	231.45	0.658
Iteration 4	112.24	218.18	124.12	222.42	0.661
Iteration 5	113.06	220.17	125.12	213.26	0.665

- New unsupervised crowd counting scheme via regression-detection biknowledge
- Formulate the mutual transformations between the output of regression and detection models to enable knowledge distillation between them
- Co-training regression and detection models using pseudo labels in an iterative self-supervised way

Thank you! # 732